欢迎来到泊头市大展铸造机械有限公司!

我们专业生产铸钢件产品外形光滑、细腻、美观!

全国服务热线13731722273 13731732155

您的位置: 首页>>资讯中心>>公司动态

灰铸铁和球墨铸铁介绍

返回列表 来源: 大展铸造 发布日期:2011-05-06 07:29:48

      1996年,对于灰铁铸件球墨铸件,国外发展了一种基于热分析并结合人工智能的系统。这种系统可以根据稳定系统来分析试样的凝固过程并预测各种铸造缺陷的可能性,同时也可以估计出物理性能。该系统利用计算机辅助热分析技术,编制了软件程序来评测铁水的微观结构和孕育效果。研究人员从热分析曲线的特征值中选择了10个作为控制参数,并且给每一个参数都定义了阈值。如果10个点都满足阈值要求,则认为铁水质量合格。该方法简单方便,一目了然。
  然而,即使随着热分析的发展,选取的特征值数目由少到多,通过选取特征值进行铁水质量评估仍然在一定程度上受到主观因素的影响。这是因为,热分析技术的应用只限于更清楚、更直观地显示冷却曲线上的特征值,并在这些特征值与铁水的预测参量之间建立一定的回归关系。而热分析特征值的寻取准确性和数学模型的回归精度是受到限制的。即使增加一阶微分和二阶微分,考虑对结晶潜热的分析,其特征值的选取仍是基于现有经验及主观因素之上的。而且对微分曲线和冷却曲线进行分析需要非常专业的知识,更加增加了分析带来的难度和主观因素的作用。
  目前,国内已有人运用人工智能神经网络在预测灰铁铸件的性能。人工神经网络是模拟生物神经传递信息的方法而建立的一种人工智能模式识别方法,具有并行、适应能力强等优点。神经元作为神经网络的基本要素,由于计算速度快而得到广泛应用。由于神经网络模型良好的自学习功能,随着模式对样本的不断增加与更新,系统具有较强的适应性,为此,可以设计建立动态综合数据库,其中存有大量模式对,并随着系统的在线运行而不断存入新的事实样本,以此作为新增模式对而使神经网络进行自学习,从而不断提高神经网络模型的适应性和预报命中率。可以将模式识别方法用于多因素影响的灰铁铸件的生产过程;运用自组织人工神经网络对受到多因素控制的生产过程进行模式识别与分类,根据生产状态代表点在空间的分布结构,寻找与控制目标之间的联系,将输入与输出间难以描述的函数关系转化为对模式识别的分类与判别,可以建立对灰铁质量合格与不合格两类状态进行识别的计算机智能专家系统,从而预测样品性能所属牌号。

咨询热线

13731722273
首页 产品 手机 顶部